En este trabajo se presenta una introducción al estudio y análisis de las Redes Neuronales Artificiales. Se hace mención de las bases neurofisiológicas que inspiran a algunas de las Arquitecturas Neuronales más populares y se plantean de manera formal sus procedimientos correspondientes haciendo uso de herramientas provenientes de áreas como el Álgebra Lineal y el Cálculo Diferencial de Varias Variables. Se estudian inicialmente las neuronas de tipo Adaline y Perceptrón. En el caso del Perceptrón se presentan el Problema de Representación y el Teorema de Convergencia a fin de plantear los alcances y limitaciones que se tiene con este tipo de Neurona Artificial. Posteriormente se aborda el estudio de la Red Madaline a fin de establecer los retos que surgen para el aprendizaje en una red formada por varias neuronas. Se da un especial énfasis a las redes compuestas por Perceptrones al estudiar los fundamentos de su popular mecanismo de aprendizaje, definido por el Algoritmo de Retropropagación. También se presentarán a las Redes de Kohonen como un ejemplo de Arquitectura Neuronal cuyo aprendizaje no requiere de supervisión. A lo largo del texto se desarrollan aplicaciones de las Redes Neuronales en los contextos del Modelado y Predicción de Señales, Modelado de Funciones Booleanas y Clasificación Automática de Imágenes.